COGNITIVE APPROACHES TO SLL ## 1. INTRODUCTION #### Universal Grammar-based researchers, # interested in the development of L2 grammars from a purely linguistic point of view: emphasis on the language dimension of SLL description/modelling of the linguistic systems → property theory # focus on competence # see language as a separate innate module # Cognitivists, # investigate hypotheses from the field of cognitive psychology and neurology emphasis on the learning component of SLL modelling the change/developmental processes of language acquisition → transition theory # how learners access linguistic knowledge; strategies they might employ; etc. # view SLA as one instantiation of learning among many others # believe we can understand the SLA process by understanding how the brain processes info #### 2. PROCESSING APPROACHES # scholars concerned to develop transition theories focus primarily on the computational dimension of language learning may or may not believe language is a separate module #### 2.1. Information Processing Models of L2 Learning # how different memory stores deal with L2 information # how information is automatized and restructured through repeated activation # basic assumptions: - Humans are viewed as active - The mind is a general-purpose system - Complex behavior is composed of simpler processes - Component processes can be isolated - Processes take time - The mind is a limited-capacity processor # 2.1.1. Attention-processing model # learners first resort to controlled processing in the L2 which - involves the temporary activation of a selection of information nodes - requires a lot of attentional control - is constrained by the limitations of the short-term memory - is typical of anyone learning a brand new skill # through repeated activation processing become automatic - # automatized sequences - stored in the long-term memory \rightarrow available very rapidly, unconsciously, and effortlessly - require minimal attentional control → automatic processes in parallel - Note: The distinction between controlled and automatic processing is one of routinization NOT one of conscious awareness | Attention to formal properties of language | Information processing | | | |--------------------------------------------|-------------------------------------------------------------|-----------------------------------------|--| | | Controlled | Automatic | | | Focal | (Cell A) | (Cell B) | | | | Performance based on formal rule learning | Performance in a test situation | | | | (Cell C) | (Cell D) | | | Peripheral | Performance based on implicit learning or analogic learning | Performance in communication situations | | # learning is movement from controlled to automatic processing via practice \rightarrow controlled processes are freed to deal with higher levels of processing \rightarrow incremental nature of learning #### # learning & restructuring: learning is the inclusion of additional information \rightarrow make <u>changes</u> to parts of the existing system the current system, i.e., restructuring changes are discontinuous or qualitatively different from a previous stage | Time 1 | Time 2 | Time 3 | Time 4 | |--------------|-----------------|-----------------|--------------| | I am no go. | | No look. | No look. | Don't look. | Don't go. | | I am no run. | I am don't run. | I am don't run. | I am no run. | | No run. | Don't run. | Don't run. | Don't run. | # restructuring account for some of the variability of learner language: restructuring destabilizes some structures in the interlanguage: # 2.1.2. Active Control of Thought (ACT) model # **declarative** knowledge (i.e., knowledge *that* something is the case) **> procedural** knowledge (i.e., knowledge *how* to do something) # essential differences between them: - Declarative knowledge in an all-or-none manner VS. procedural knowledge can be partial - Declarative knowledge acquired suddenly VS. procedural knowledge acquired gradually - Declarative knowledge can be communicated verbally VS. procedural knowledge cannot # move from declarative to procedural knowledge: ## • Cognitive stage: a description of the procedure is learnt, e.g. information from a teacher + concrete exemplars a lot of attentional control required #### • Associative stage: a method for performing the skill is worked out proceduralization is achieved after a few trials reduces demands on working memory errors are likely during the associative stage knowledge at this stage is prone to restructuring # Autonomous stage: the skill becomes more automatic extensive practice needed \rightarrow decrease time required to perform the skill, error rate, etc. automatized knowledge outside attentional control \rightarrow difficult to change or delete ## 2.1.3. Skill acquisition theory (SAT) #### # learning: initial representation of knowledge \rightarrow initial changes in behavior \rightarrow eventual spontaneous, largely effortless behavior - Cognitive, declarative or presentation stage: learners establish some new explicit knowledge - Associative, procedural or practice stage: information about how to do something is put into action - **Autonomous, automatic, or production stage:** a great deal of automatization has to take place through extensive practice - # SLL → communicative practice serves as a device for proceduralizing knowledge of linguistic structures - # practice needs to be skill-related \rightarrow procedural knowledge is context-specific and cannot easily be transferred \rightarrow uni-directionality or specificity of practice - # declarative knowledge is transferable to other contexts \rightarrow bi-directionality # # problems of SAT: - no explanation for the orders and sequences of acquisition - insisting that all knowledge starts out in declarative form # # six key SLA phenomena: - (1) Why some structures never seem to enter the interlanguage at all? - (2) Why native-like forms are used in some contexts but not others? - (3) Why learning is incremental? - **(4)** Why there are differences between individual learners? - **(5)** Why there is fossilization? - **(6)** Why some structures are more likely to fossilize than others? ## 2.2 Theories of Second Language Processing Explore the factors controlling the way in which L2 learners process linguistic input ## 2.2.1 Input processing (IP) # working memory is capacity-limited → difficult to attend concurrently to different stimuli in the input → main concern: how learners allocate attentional resources during online processing = what causes learners to detect certain stimuli in the input and not others # SLL: parse sentences \rightarrow assign form-meaning relationships \rightarrow comprehend utterances \rightarrow convert L2 input into intake linguistic data processed from the input and held in working memory for further processing # input processing does not offer - a complete model of processing of input - any explanation of how intake becomes integrated into IL system # a set of principles that explain the apparent failure of L2 learners to process linguistic forms: - 1) The Primacy of Meaning Principle: - a) The Primacy of Content Words Principle: e.g., The cat is sleeping. - b) The Lexical Preference Principle: e.g., I studied well yesterday. - c) The Preference for Non-Redundancy Principle: e.g., The cat is sleeping vs. The cat sleeps ten hours every day. - d) *The Meaning Before Non-Meaning Principle:* e.g., Mary thinks **that** he is smart vs. He loves **that** girl. - e) The Availability of Resources Principle - f) The Sentence Location Principle - 2) The First Noun Principle - a) The Lexical Semantics Principle: e.g., The fence kicked the horse - b) The Event Probabilities Principle: e.g., The child scolded the mother - c) The Contextual Constraint Principle: e.g., John is in the hospital because lo ataco Maria (Mary attacked him) - # **Processing instruction** explicit and input-based –: how learners process input and make form-meaning relationships \rightarrow If we know what learners are doing wrong at the level of input processing, can we create pedagogical intervention to push them away from non-optimal processing? *IP approach to teaching grammar* → IP attempts to deal with not just a linguistic difficulty, but with a problematic processing strategy ## 2.2.2. Autonomous induction theory (AIT) # Suzanne Carroll: - A theory of the representation of language in the mind (i.e., property theory) - A theory of how language is processed, both receptively and productively - A theory of changes in linguistic competence (i.e., transition theory) #### # Jackendoff: **Integrative processors** integrate primitives of some level of representation into complex structures → Carroll claims mental representations of language involve a number of distinct modules **Correspondence processors** link the distinct autonomous representations → Carroll states their task is to map output onto a level higher up # a version of inductive learning (i-learning) \rightarrow initiated when we fail to parse incoming language stimuli adequately using our existing mental representations = language acquisition device is triggered when the parsing system fails, e.g., *That's the cat whom the dog bit* - Note: Adjustments lead to learning - Note: Parsing presupposes linguistic competence; acquisition presupposes the absence of it # as children learn their L1, they develop processing procedures that are tuned to the specific grammatical properties of the L1 \rightarrow language users reveal preferences for parsing sentences in particular ways # filter hypothesis preferences transfer fossilization # UG explains how a learner comes to have a representational system encoding phonological and morphosyntactic information → though children are not empiricist learners, adults learn L2 empirically ## 2.2.3 Processability theory # requirements: processing component (based on Levelt's (1989) model of language generation) theory of grammar (Lexical Functional Grammar, Halliday, 1985) #### # Pienemann believes: language acquisition is the gradual acquisition of computational mechanisms → how learners acquire the computational mechanisms that operate on the linguistic knowledge prod/comp of L2 forms can take place to the extent that they can be handled by the linguistic processor # learners must learn to exchange grammatical information across elements of a sentence \rightarrow feature unification. Steps: - identification of grammatical information in the lexical entry - temporary storage of that information - its utilization at another point in the constituent structure # the view on language production is based on Levelt (1989). Premises: - processing components are generally not consciously controlled → normal, fluent speech - processing is incremental - output of the processor is linear, although it may not be mapped onto the underlying meaning in a linear way - grammatical processing has access to a temporary memory store that holds grammatical info # the ability to match features across elements in a sentence develops gradually = learners have a **Hypothesis Space** which develops over time: - level 1: lemma access, e.g., producing a simple word such as play / Where is my book? - level 2: category procedure; lexical morphemes - level 3: phrasal procedure, e.g., matching gender between *Det* and *N* - level 4: simplified S-procedure; exchange of information from internal to salient constituent - level 5: S-procedure; inter-phrasal morphemes; exchange of information between internal constituents, e.g., subject-verb agreement - level 6: subordinate clause procedure - → learners will be able to share information across elements in a sentence in gradually less local domain ## # Teachability hypothesis - L2ers follow a fairly rigid route in their acquisition of certain grammatical structures > Stages of acquisition cannot be skipped through formal instruction - L2ers can only operate within their Hypothesis Space → *Instruction will be most beneficial if it focuses on structures from the next stage* # 2.2.4. Nativization model L2 acquisition consists of two general processes: Nativization: learners make the input conform to their own internalized view of what constitutes the L2 system $\leftarrow \rightarrow$ they simplify the learning task by forming hypotheses based on knowledge that they already possess Denativization: learners accommodate to an external norm $\leftarrow \rightarrow$ they adjust their interlanguage systems to make them fit with the input, making use of inferencing strategies # 2.2.5. The efficiency-driven processor # provide explanations for language acquisition by reference to more basic non-linguistic factors # no innate linguistic constraints on the language processor # two cognitive systems: **Lexicon** \rightarrow as a repository of information about a language's words and morphemes, including information about: category membership (N, V, etc.) combinatorial propensities (co-dependencies) co-dependencies could be thought of as the glue that holds a sentence together, e.g. $drink: V, \langle N N \rangle \rightarrow Mary drank tea.$ how co-dependencies are to be resolved? **Computational system** → operates on words, combining them in particular ways to construct phrases and sentences these computational operations are carried out by working memory \rightarrow the computational system should operate in the most efficient manner (i.e. *Minimize the burden on working memory*) \rightarrow *codependencies must be resolved at the first opportunity*: it strives to <u>interpret incoming language</u> and <u>produce outgoing language</u> so that as little information as possible needs to be stored. Production: [Mary drank] → [Mary [drank tea]] comprehension \rightarrow processing costs are caused by: having to revise an interpretation and so reactivate representations within WM not knowing which elements of a sentence resolve a co-dependency having an item left unresolved in the sentence # language acquisition is about the creation of mappings between form and meaning Mary drank tea 1. Interpret the first nominal (Mary) MARY - 2. Access the meaning of the transitive verb *drink*; find its agent argument (MARY) to the left DRINK <agent: MARY> - 3. Interpret the nominal to the right (TEA); treat it as the verb's patient argument DRINK <agent: MARY; patient: TEA> Mary drank tea. \leftarrow form (sentence) DEANK <agent: MARY; patient: TEA> ← meaning the same sequence of three operations is repeatedly activated \rightarrow forming a **computational** routine which improves the speed and efficiency of the processor as they are gradually strengthened (**processing amelioration**) # development \rightarrow as computational routines are formed # acquisition \rightarrow as computational routines become entrenched # overgeneralization \rightarrow as the computational routine of producing a structure (e.g. -ed) becomes automatized, making it less costly to overgeneralize than to inhibit the automatic routine # interference \rightarrow as entrenched computational routines block or inhibit other routines developing (e.g. SVO to SOV) #### 3. EMERGENTISM # L2 learning is **bottom up** → language learning taps into the same, general, cognitive mechanisms that drive basic human learning in order to extract structures and patterns from the language input # **usage-based** view of development \rightarrow knowledge of language is created and strengthened in response to opportunities to interpret and/or form utterances in the course of communication # learning \rightarrow extraction of patterns from the language input they are exposed to \rightarrow formal aspects of language emerge / are abstracted from language use, rather than being either innate, or learned as rules Note: There is no way to explain how people come to know more than what they are exposed to ## 3.1. Input-Related Factors # what particular characteristics of L2 input can predict whether particular linguistic features are acquired early or late? # one characteristics is **cue** — animacy, case marking, agreement, etc. → **Competition Model** # functionalist/interactionist → learner's grammar results from the interaction between input and cognitive mechanisms # learner's task is to discover the particular form-function mappings # competition among various cues that signal functions like 'agent' (there is language-specific strength assigned to cues) – hence, competition model # speakers use four types of cues — word order, vocabulary, morphology, and intonation — to make form-function mappings: e.g., John kicks the ball \rightarrow cues are word order, animacy criterion, subject—verb agreement e.g., That teacher we like a lot \rightarrow cues are animacy criterion, case, subject—verb agreement #### # usefulness of a cue: Cue availability \rightarrow how often the cue is present when a particular pattern is being interpreted Cue reliability \rightarrow how often a cue points to a particular interpretation Conflict validity → whether a cue wins or loses when it appears in competitive environments In English, word order is a highly available & highly reliable cue for identifying subject In English, agreement is highly reliable & often unavailable for identifying subject → there is language-specific strength assigned to cues #### # interference issue # the resolution of these conflicts - a) resort to L1 interpretation strategies - b) resort to a universal selection of meaning-based cues - c) gradually adopt the appropriate L2 biases as their L2 proficiency increases # learning \Rightarrow readjustment of which cues are relevant to interpretation and a determination of the relative strengths of those cues ## 3.2. Learner-Related Factors: Associative Learning CREED **Construction-based** → learning involves learning and recycling *constructions*: concrete lexical items such as book; formulae such as once upon a time; slot-and-frame constructions such as give [someone] [something]; more open abstract schemata such as [subject V Obj1 Obj2]. **Rational** \rightarrow language representations in the mind are tuned to predict the linguistic constructions that are most likely to be relevant in the ongoing discourse **Exemplar-driven** \rightarrow language learning is formulaic (e.g., Good+daytime); acquisition is based on exemplars \rightarrow every time the language learner encounters an exemplar of a construction, the language system compares it with memories of previous encounters Emergent → regularities emerge as learners determine structure from language usage; learning responds to and emerges out of the learner's experiences of the language rather than being the result of innately constrained rules **Dialectic** → interaction with others or instructional events such as conscious learning help to mitigate the aspects of associative learning that cause L2 learning problems # 3.2.1. Learners' use of frequency in the input #1 the more times a stimulus is encountered, the faster and more accurately it is processed #2 a critical component used in the calculation of probabilities: humans have innate abilities to pick out cues and to calculate statistical probabilities implicitly learning language is a statistical process: it requires the learner to acquire a set of associations between constructions and their function/semantic interpretations # frequency –i.e., positive evidence – does not guarantee noticing \rightarrow for some features negative evidence may be needed # 3.2.2. Overshadowing and attention blocking # Overshadowing # where a feature in the input is redundant \rightarrow the feature may not be processed in a way that is useful for learning, e.g., *Yesterday, I carried that box*. # this processing failure is thought to happen when: other features are more salient world knowledge is likely to predict a communicatively satisfactory meaning other features have been activated many more times before, in the L1 ## **Attention blocking** # overshadowing can over time lead to attention blocking: if x has always expressed a particular meaning/function, it is difficult to associate x with another meaning or function, e.g. -ly if a particular meaning has reliably been expressed using x, it is difficult to associate a different or an additional language feature with that same meaning, e.g. *indefiniteness* ## 3.2.3. Construction learning # language learning = learning constructions or conventionalized form-meaning mappings # are learners assisted by factors such as frequency or **prototypicality**? *verb locatives* → *go somewhere* *verb object locatives* → *put something somewhere* $ditransitives \rightarrow give somebody something$ ## 3.2.4. Statistical learning and connectionist accounts # connectionist model = parallel distributed processing (PDP) (Rumelhart & McClelland, 1986) → neurally inspired models of human information processing: nodes connected by pathways # learning \rightarrow as the network/learner is able to make associations between units: Human mind is predisposed to look for associations between elements, (i.e., find regularities in the input = extract probabilistic patterns) and create links between them \rightarrow knowledge emerges gradually, driven by the exemplars learners are exposed to Associations become weakened through non-activation \neq become strengthened through exposure to repeated patterns # implicit knowledge is conceptualized as a complex adaptive system that is in continual flux the patterns of connections that emerge become so well-established that they reflect the categories and rules found in linguistic descriptions # what people learn and store in their implicit memories are 'memorized sequences' -> acquisition occurs when statistical regularities are absorbed via implicit learning = when learners unconsciously tally the likelihood that one form will follow another # capacity for language: ability to extract abstract categories from these memorized sequences by recognizing that a certain type of element occurs in a specific slot. This element then takes on an abstract value, e.g., *I don't* ... # processes are unconscious: learners dwell on its products and formulate explicit rules > explicit knowledge can arise inductively # explicit knowledge can also be taught deductively # linguistic knowledge takes the form not of rules or items but of an elaborate system of weighted connections \rightarrow rule-like behavior \neq rule-governed behavior # the foregoing discussion on SLA theories could be subsumed under two paradigms: Symbolists (information-processing theories & UG) adopt an abstract view of linguistic representation \rightarrow linguistic knowledge consists of a universal set of symbols and rules for combining them make a distinction between property theory and transition theory #### Connectionists view linguistic knowledge as a complex network of associations \rightarrow linguistic knowledge consists of associations of varying strengths, derived from elements encountered in the input no distinction is make between representation (product) and learning (process) mechanisms = no belief in the distinction between competence and performance