

# COGNITIVE APPROACHES TO SLL

## 1. INTRODUCTION

#### Universal Grammar-based researchers,

# interested in the development of L2 grammars from a purely linguistic point of view:

emphasis on the language dimension of SLL

description/modelling of the linguistic systems → property theory

# focus on competence

# see language as a separate innate module

# Cognitivists,

# investigate hypotheses from the field of cognitive psychology and neurology

emphasis on the learning component of SLL

modelling the change/developmental processes of language acquisition → transition theory

# how learners access linguistic knowledge; strategies they might employ; etc.

# view SLA as one instantiation of learning among many others

# believe we can understand the SLA process by understanding how the brain processes info

#### 2. PROCESSING APPROACHES

# scholars

concerned to develop transition theories focus primarily on the computational dimension of language learning may or may not believe language is a separate module

#### 2.1. Information Processing Models of L2 Learning

# how different memory stores deal with L2 information

# how information is automatized and restructured through repeated activation

# basic assumptions:

- Humans are viewed as active
- The mind is a general-purpose system
- Complex behavior is composed of simpler processes
- Component processes can be isolated
- Processes take time
- The mind is a limited-capacity processor

# 2.1.1. Attention-processing model

# learners first resort to controlled processing in the L2 which

- involves the temporary activation of a selection of information nodes
- requires a lot of attentional control
- is constrained by the limitations of the short-term memory
- is typical of anyone learning a brand new skill

# through repeated activation processing become automatic

- # automatized sequences
  - stored in the long-term memory  $\rightarrow$  available very rapidly, unconsciously, and effortlessly
  - require minimal attentional control → automatic processes in parallel
  - Note: The distinction between controlled and automatic processing is one of routinization NOT one of conscious awareness

| Attention to formal properties of language | Information processing                                      |                                         |  |
|--------------------------------------------|-------------------------------------------------------------|-----------------------------------------|--|
|                                            | Controlled                                                  | Automatic                               |  |
| Focal                                      | (Cell A)                                                    | (Cell B)                                |  |
|                                            | Performance based on formal rule learning                   | Performance in a test situation         |  |
|                                            | (Cell C)                                                    | (Cell D)                                |  |
| Peripheral                                 | Performance based on implicit learning or analogic learning | Performance in communication situations |  |

# learning is movement from controlled to automatic processing via practice  $\rightarrow$  controlled processes are freed to deal with higher levels of processing  $\rightarrow$  incremental nature of learning

#### # learning & restructuring:

learning is the inclusion of additional information  $\rightarrow$  make <u>changes</u> to parts of the existing system the current system, i.e., restructuring

changes are discontinuous or qualitatively different from a previous stage

| Time 1       | Time 2          | Time 3          | Time 4       |
|--------------|-----------------|-----------------|--------------|
| I am no go.  | I am no go.     | I am no go.     | I am no go.  |
| No look.     | No look.        | Don't look.     | Don't go.    |
| I am no run. | I am don't run. | I am don't run. | I am no run. |
| No run.      | Don't run.      | Don't run.      | Don't run.   |

# restructuring account for some of the variability of learner language: restructuring destabilizes some structures in the interlanguage:



# 2.1.2. Active Control of Thought (ACT) model

# **declarative** knowledge (i.e., knowledge *that* something is the case) **> procedural** knowledge (i.e., knowledge *how* to do something)

# essential differences between them:

- Declarative knowledge in an all-or-none manner VS. procedural knowledge can be partial
- Declarative knowledge acquired suddenly VS. procedural knowledge acquired gradually
- Declarative knowledge can be communicated verbally VS. procedural knowledge cannot # move from declarative to procedural knowledge:

## • Cognitive stage:

a description of the procedure is learnt, e.g. information from a teacher + concrete exemplars a lot of attentional control required

#### • Associative stage:

a method for performing the skill is worked out proceduralization

is achieved after a few trials

reduces demands on working memory

errors are likely during the associative stage

knowledge at this stage is prone to restructuring

# Autonomous stage:

the skill becomes more automatic extensive practice needed  $\rightarrow$  decrease time required to perform the skill, error rate, etc. automatized knowledge outside attentional control  $\rightarrow$  difficult to change or delete

## 2.1.3. Skill acquisition theory (SAT)

#### # learning:

initial representation of knowledge  $\rightarrow$  initial changes in behavior  $\rightarrow$  eventual spontaneous, largely effortless behavior

- Cognitive, declarative or presentation stage: learners establish some new explicit knowledge
- Associative, procedural or practice stage: information about how to do something is put into action
- **Autonomous, automatic, or production stage:** a great deal of automatization has to take place through extensive practice
- # SLL → communicative practice serves as a device for proceduralizing knowledge of linguistic structures
- # practice needs to be skill-related  $\rightarrow$  procedural knowledge is context-specific and cannot easily be transferred  $\rightarrow$  uni-directionality or specificity of practice
- # declarative knowledge is transferable to other contexts  $\rightarrow$  bi-directionality

# # problems of SAT:

- no explanation for the orders and sequences of acquisition
- insisting that all knowledge starts out in declarative form

# # six key SLA phenomena:

- (1) Why some structures never seem to enter the interlanguage at all?
- (2) Why native-like forms are used in some contexts but not others?
- (3) Why learning is incremental?
- **(4)** Why there are differences between individual learners?
- **(5)** Why there is fossilization?
- **(6)** Why some structures are more likely to fossilize than others?

## 2.2 Theories of Second Language Processing

Explore the factors controlling the way in which L2 learners process linguistic input

## 2.2.1 Input processing (IP)

# working memory is capacity-limited → difficult to attend concurrently to different stimuli in the input → main concern: how learners allocate attentional resources during online processing = what causes learners to detect certain stimuli in the input and not others

# SLL: parse sentences  $\rightarrow$  assign form-meaning relationships  $\rightarrow$  comprehend utterances  $\rightarrow$  convert L2 input into intake

linguistic data processed from the input and held in working memory for further processing

# input processing does not offer

- a complete model of processing of input
- any explanation of how intake becomes integrated into IL system

# a set of principles that explain the apparent failure of L2 learners to process linguistic forms:

- 1) The Primacy of Meaning Principle:
  - a) The Primacy of Content Words Principle: e.g., The cat is sleeping.



- b) The Lexical Preference Principle: e.g., I studied well yesterday.
- c) The Preference for Non-Redundancy Principle: e.g., The cat is sleeping vs. The cat sleeps ten hours every day.
- d) *The Meaning Before Non-Meaning Principle:* e.g., Mary thinks **that** he is smart vs. He loves **that** girl.
- e) The Availability of Resources Principle
- f) The Sentence Location Principle
- 2) The First Noun Principle
  - a) The Lexical Semantics Principle: e.g., The fence kicked the horse
  - b) The Event Probabilities Principle: e.g., The child scolded the mother
  - c) The Contextual Constraint Principle: e.g., John is in the hospital because lo ataco Maria (Mary attacked him)
- # **Processing instruction** explicit and input-based –: how learners process input and make form-meaning relationships  $\rightarrow$  If we know what learners are doing wrong at the level of input processing, can we create pedagogical intervention to push them away from non-optimal processing?



*IP approach to teaching grammar* 

→ IP attempts to deal with not just a linguistic difficulty, but with a problematic processing strategy

## 2.2.2. Autonomous induction theory (AIT)

# Suzanne Carroll:

- A theory of the representation of language in the mind (i.e., property theory)
- A theory of how language is processed, both receptively and productively
- A theory of changes in linguistic competence (i.e., transition theory)

#### # Jackendoff:

**Integrative processors** integrate primitives of some level of representation into complex structures → Carroll claims mental representations of language involve a number of distinct modules



**Correspondence processors** link the distinct autonomous representations → Carroll states their task is to map output onto a level higher up

# a version of inductive learning (i-learning)  $\rightarrow$  initiated when we fail to parse incoming language stimuli adequately using our existing mental representations = language acquisition device is triggered when the parsing system fails, e.g., *That's the cat whom the dog bit* 

- Note: Adjustments lead to learning
- Note: Parsing presupposes linguistic competence; acquisition presupposes the absence of it

# as children learn their L1, they develop processing procedures that are tuned to the specific grammatical properties of the L1  $\rightarrow$  language users reveal preferences for parsing sentences in particular ways

# filter hypothesis

preferences transfer fossilization

# UG explains how a learner comes to have a representational system encoding phonological and morphosyntactic information → though children are not empiricist learners, adults learn L2 empirically

## 2.2.3 Processability theory

# requirements:

processing component (based on Levelt's (1989) model of language generation) theory of grammar (Lexical Functional Grammar, Halliday, 1985)

#### # Pienemann believes:

language acquisition is the gradual acquisition of computational mechanisms → how learners acquire the computational mechanisms that operate on the linguistic knowledge prod/comp of L2 forms can take place to the extent that they can be handled by the linguistic processor

# learners must learn to exchange grammatical information across elements of a sentence  $\rightarrow$  feature unification. Steps:

- identification of grammatical information in the lexical entry
- temporary storage of that information
- its utilization at another point in the constituent structure

# the view on language production is based on Levelt (1989). Premises:

- processing components are generally not consciously controlled → normal, fluent speech
- processing is incremental
- output of the processor is linear, although it may not be mapped onto the underlying meaning in a linear way
- grammatical processing has access to a temporary memory store that holds grammatical info

# the ability to match features across elements in a sentence develops gradually = learners have a **Hypothesis Space** which develops over time:



- level 1: lemma access, e.g., producing a simple word such as play / Where is my book?
- level 2: category procedure; lexical morphemes
- level 3: phrasal procedure, e.g., matching gender between *Det* and *N*
- level 4: simplified S-procedure; exchange of information from internal to salient constituent
- level 5: S-procedure; inter-phrasal morphemes; exchange of information between internal constituents, e.g., subject-verb agreement
- level 6: subordinate clause procedure
- → learners will be able to share information across elements in a sentence in gradually less local domain

## # Teachability hypothesis

- L2ers follow a fairly rigid route in their acquisition of certain grammatical structures > Stages of acquisition cannot be skipped through formal instruction
- L2ers can only operate within their Hypothesis Space → *Instruction will be most beneficial if it focuses on structures from the next stage*

# 2.2.4. Nativization model

L2 acquisition consists of two general processes:

Nativization:

learners make the input conform to their own internalized view of what constitutes the L2 system  $\leftarrow \rightarrow$  they simplify the learning task by forming hypotheses based on knowledge that they already possess

Denativization:

learners accommodate to an external norm  $\leftarrow \rightarrow$  they adjust their interlanguage systems to make them fit with the input, making use of inferencing strategies

# 2.2.5. The efficiency-driven processor

# provide explanations for language acquisition by reference to more basic non-linguistic factors # no innate linguistic constraints on the language processor

# two cognitive systems:

**Lexicon**  $\rightarrow$  as a repository of information about a language's words and morphemes, including information about:

category membership (N, V, etc.)

combinatorial propensities (co-dependencies)

co-dependencies could be thought of as the glue that holds a sentence together, e.g.

 $drink: V, \langle N N \rangle \rightarrow Mary drank tea.$ 

how co-dependencies are to be resolved?

**Computational system** → operates on words, combining them in particular ways to construct phrases and sentences



these computational operations are carried out by working memory  $\rightarrow$  the computational system should operate in the most efficient manner (i.e. *Minimize the burden on working memory*)  $\rightarrow$  *codependencies must be resolved at the first opportunity*:

it strives to <u>interpret incoming language</u> and <u>produce outgoing language</u> so that as little information as possible needs to be stored. Production:

[Mary drank] → [Mary [drank tea]]

comprehension  $\rightarrow$  processing costs are caused by:

having to revise an interpretation and so reactivate representations within WM not knowing which elements of a sentence resolve a co-dependency having an item left unresolved in the sentence

# language acquisition is about the creation of mappings between form and meaning Mary drank tea

1. Interpret the first nominal (Mary)

MARY

- 2. Access the meaning of the transitive verb *drink*; find its agent argument (MARY) to the left DRINK <agent: MARY>
- 3. Interpret the nominal to the right (TEA); treat it as the verb's patient argument

DRINK <agent: MARY; patient: TEA>

Mary drank tea.  $\leftarrow$  form (sentence)

DEANK <agent: MARY; patient: TEA> ← meaning

the same sequence of three operations is repeatedly activated  $\rightarrow$  forming a **computational** routine which improves the speed and efficiency of the processor as they are gradually strengthened (**processing amelioration**)

# development  $\rightarrow$  as computational routines are formed

# acquisition  $\rightarrow$  as computational routines become entrenched

# overgeneralization  $\rightarrow$  as the computational routine of producing a structure (e.g. -ed) becomes automatized, making it less costly to overgeneralize than to inhibit the automatic routine

# interference  $\rightarrow$  as entrenched computational routines block or inhibit other routines developing (e.g. SVO to SOV)

#### 3. EMERGENTISM

# L2 learning is **bottom up** → language learning taps into the same, general, cognitive mechanisms that drive basic human learning in order to extract structures and patterns from the language input

# **usage-based** view of development  $\rightarrow$  knowledge of language is created and strengthened in response to opportunities to interpret and/or form utterances in the course of communication

# learning  $\rightarrow$  extraction of patterns from the language input they are exposed to  $\rightarrow$  formal aspects of language emerge / are abstracted from language use, rather than being either innate, or learned as rules

Note: There is no way to explain how people come to know more than what they are exposed to

## 3.1. Input-Related Factors

# what particular characteristics of L2 input can predict whether particular linguistic features are acquired early or late?

# one characteristics is **cue** — animacy, case marking, agreement, etc. → **Competition Model** 

# functionalist/interactionist → learner's grammar results from the interaction between input and cognitive mechanisms

# learner's task is to discover the particular form-function mappings

# competition among various cues that signal functions like 'agent' (there is language-specific strength assigned to cues) – hence, competition model

# speakers use four types of cues — word order, vocabulary, morphology, and intonation — to make form-function mappings:

e.g., John kicks the ball  $\rightarrow$  cues are word order, animacy criterion, subject—verb agreement e.g., That teacher we like a lot  $\rightarrow$  cues are animacy criterion, case, subject—verb agreement

#### # usefulness of a cue:

Cue availability  $\rightarrow$  how often the cue is present when a particular pattern is being interpreted Cue reliability  $\rightarrow$  how often a cue points to a particular interpretation

Conflict validity → whether a cue wins or loses when it appears in competitive environments
In English, word order is a highly available & highly reliable cue for identifying subject
In English, agreement is highly reliable & often unavailable for identifying subject

→ there is language-specific strength assigned to cues

#### # interference issue

# the resolution of these conflicts

- a) resort to L1 interpretation strategies
- b) resort to a universal selection of meaning-based cues
- c) gradually adopt the appropriate L2 biases as their L2 proficiency increases

# learning  $\Rightarrow$  readjustment of which cues are relevant to interpretation and a determination of the relative strengths of those cues

## 3.2. Learner-Related Factors: Associative Learning CREED

**Construction-based** → learning involves learning and recycling *constructions*:

concrete lexical items such as book;

formulae such as once upon a time;

slot-and-frame constructions such as give [someone] [something];

more open abstract schemata such as [subject V Obj1 Obj2].

**Rational**  $\rightarrow$  language representations in the mind are tuned to predict the linguistic constructions that are most likely to be relevant in the ongoing discourse



**Exemplar-driven**  $\rightarrow$  language learning is formulaic (e.g., Good+daytime); acquisition is based on exemplars  $\rightarrow$  every time the language learner encounters an exemplar of a construction, the language system compares it with memories of previous encounters

Emergent → regularities emerge as learners determine structure from language usage; learning responds to and emerges out of the learner's experiences of the language rather than being the result of innately constrained rules

**Dialectic** → interaction with others or instructional events such as conscious learning help to mitigate the aspects of associative learning that cause L2 learning problems

# 3.2.1. Learners' use of frequency in the input

#1 the more times a stimulus is encountered, the faster and more accurately it is processed

#2 a critical component used in the calculation of probabilities:

humans have innate abilities to pick out cues and to calculate statistical probabilities implicitly 

learning language is a statistical process: it requires the learner to acquire a set of associations between constructions and their function/semantic interpretations

# frequency –i.e., positive evidence – does not guarantee noticing  $\rightarrow$  for some features negative evidence may be needed

# 3.2.2. Overshadowing and attention blocking

# Overshadowing

# where a feature in the input is redundant  $\rightarrow$  the feature may not be processed in a way that is useful for learning, e.g., *Yesterday, I carried that box*.

# this processing failure is thought to happen when:

other features are more salient

world knowledge is likely to predict a communicatively satisfactory meaning

other features have been activated many more times before, in the L1

## **Attention blocking**

# overshadowing can over time lead to attention blocking:

if x has always expressed a particular meaning/function, it is difficult to associate x with another meaning or function, e.g. -ly

if a particular meaning has reliably been expressed using x, it is difficult to associate a different or an additional language feature with that same meaning, e.g. *indefiniteness* 

## 3.2.3. Construction learning

# language learning = learning constructions or conventionalized form-meaning mappings

# are learners assisted by factors such as frequency or **prototypicality**?

*verb locatives* → *go somewhere* 

*verb object locatives* → *put something somewhere* 

 $ditransitives \rightarrow give somebody something$ 

## 3.2.4. Statistical learning and connectionist accounts

# connectionist model = parallel distributed processing (PDP) (Rumelhart & McClelland, 1986) → neurally inspired models of human information processing: nodes connected by pathways

# learning  $\rightarrow$  as the network/learner is able to make associations between units:

Human mind is predisposed to look for associations between elements, (i.e., find regularities in the input = extract probabilistic patterns) and create links between them  $\rightarrow$  knowledge emerges gradually, driven by the exemplars learners are exposed to

Associations become weakened through non-activation  $\neq$  become strengthened through exposure to repeated patterns

# implicit knowledge is conceptualized as a complex adaptive system that is in continual flux

the patterns of connections that emerge become so well-established that they reflect the categories and rules found in linguistic descriptions

# what people learn and store in their implicit memories are 'memorized sequences' -> acquisition occurs when statistical regularities are absorbed via implicit learning =

when learners unconsciously tally the likelihood that one form will follow another



# capacity for language: ability to extract abstract categories from these memorized sequences by recognizing that a certain type of element occurs in a specific slot. This element then takes on an abstract value, e.g., *I don't* ...

# processes are unconscious: learners dwell on its products and formulate explicit rules > explicit knowledge can arise inductively

# explicit knowledge can also be taught deductively

# linguistic knowledge takes the form not of rules or items but of an elaborate system of weighted connections  $\rightarrow$  rule-like behavior  $\neq$  rule-governed behavior

# the foregoing discussion on SLA theories could be subsumed under two paradigms:

Symbolists (information-processing theories & UG)

adopt an abstract view of linguistic representation  $\rightarrow$  linguistic knowledge consists of a universal set of symbols and rules for combining them

make a distinction between property theory and transition theory

#### Connectionists

view linguistic knowledge as a complex network of associations  $\rightarrow$  linguistic knowledge consists of associations of varying strengths, derived from elements encountered in the input

no distinction is make between representation (product) and learning (process) mechanisms = no belief in the distinction between competence and performance